Geodesics and Compression Bodies

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Geodesics and Compression Bodies

We consider hyperbolic structures on the compression body C with genus 2 positive boundary and genus 1 negative boundary. Note that C deformation retracts to the union of the torus boundary and a single arc with its endpoints on the torus. We call this arc the core tunnel of C. We conjecture that, in any geometrically finite structure on C, the core tunnel is isotopic to a geodesic. By consider...

متن کامل

Short Geodesics in Hyperbolic Compression Bodies Are Not Knotted

Let N̄ be a compact, orientable, irreducible and atoroidal 3-manifold with boundary ∂N̄ . A simple closed curve γ ⊂ N̄ is said to be unknotted with respect to ∂N̄ if it can be isotoped into ∂N̄ . Equivalently, γ is contained in an embedded surface which is isotopic to the boundary. More generally, a finite collection Γ = {γ1, . . . , γn} of simple curves is unlinked in N̄ if there is a collection of ...

متن کامل

Motion Compression using Principal Geodesics Analysis

We present a novel, lossy compression method for human motion data that exploits both temporal and spatial coherence. We first build a compact skeleton pose model from a single motion using Principal Geodesic Analysis(PGA). The key idea is to perform compression by only storing the model parameters along with the end-joints and root joint trajectories in the output data. The input data are reco...

متن کامل

Mapping Class Groups of Compression Bodies and 3-Manifolds

We analyze the mapping class group Hx(W ) of automorphisms of the exterior boundary W of a compression body (Q,V ) of dimension 3 or 4 which extend over the compression body. Here V is the interior boundary of the compression body (Q,V ). Those automorphisms which extend as automorphisms of (Q,V ) rel V are called discrepant automorphisms, forming the mapping class group Hd(W ) of discrepant au...

متن کامل

Liquid crystals and geodesics

2014 Since a unit vector n is a point on the unit sphere, any one-dimensional liquid crystal configuratior n(z), a ~ z ~ b, generates a path on the unit sphere. In order to see what configurations are stable, we map the unit sphere onto a surface G having the property that equilibrium configurations of a nematic liquid crystal map into geodesic lines on the surface (geodesics). The shape of the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Experimental Mathematics

سال: 2014

ISSN: 1058-6458,1944-950X

DOI: 10.1080/10586458.2013.870503